Parametric Mortality Indexes: From Index Construction to Hedging Strategies

Chong It Tan, ASA, CERA
Nanyang Business School, Singapore

Joint work with Jackie Li, Johnny Siu-Hang Li and Uditha Balasooriya
Introduction

Construction of Mortality Indexes

Securitization

Hedging Strategies

Conclusion
Life Market

- the market for mortality/longevity-linked securities
- trading/hedging of longevity risk
- lack of liquidity
- creation of mortality indexes
Life Market

- the market for mortality/longevity-linked securities
- trading/hedging of longevity risk
- lack of liquidity
- creation of mortality indexes
Life Market

- the market for mortality/longevity-linked securities
- trading/hedging of longevity risk
- lack of liquidity
- creation of mortality indexes
Mortality Indexes

- model-free indexes
 - Credit Suisse Longevity Index (Credit Suisse 2005), LifeMetrics Index (J.P. Morgan 2007)
 - these indexes are either highly aggregate or specific
 - keep track of a large number of indexes

- model-based indexes
 - stochastic models
 - time-varying parameters
Mortality Indexes

- model-free indexes
 - Credit Suisse Longevity Index (Credit Suisse 2005), LifeMetrics Index (J.P. Morgan 2007)
 - these indexes are either highly aggregate or specific
 - keep track of a large number of indexes

- model-based indexes
 - stochastic models
 - time-varying parameters
Mortality Indexes

- model-free indexes
 - Credit Suisse Longevity Index (Credit Suisse 2005), LifeMetrics Index (J.P. Morgan 2007)
 - these indexes are either highly aggregate or specific
 - keep track of a large number of indexes

- model-based indexes
 - stochastic models
 - time-varying parameters
Model-based Mortality Indexes

- 3 primary criteria by Chan et al. (2014)
 - the new-data-invariant property: to ensure tractability
 - highly interpretable
 - varying age-pattern of mortality improvement
- six stochastic models in Dowd et al. (2010)
 - M1 (Lee-Carter model)
 - M2 (Renshaw-Haberman model)
 - M3 (Age-Period-Cohort model)
 - M5 (Cairns-Blake-Dowd model)
 - M6 (Cairns-Blake-Dowd model with cohort effects)
 - M7 (Cairns-Blake-Dowd model with cohort and quadratic age effects)
- Chan et al. (2014) found that M5 is the most suitable model
Model-based Mortality Indexes

- 3 primary criteria by Chan et al. (2014)
 - the new-data-invariant property: to ensure tractability
 - highly interpretable
 - varying age-pattern of mortality improvement

- six stochastic models in Dowd et al. (2010)
 - M1 (Lee-Carter model)
 - M2 (Renshaw-Haberman model)
 - M3 (Age-Period-Cohort model)
 - M5 (Cairns-Blake-Dowd model)
 - M6 (Cairns-Blake-Dowd model with cohort effects)
 - M7 (Cairns-Blake-Dowd model with cohort and quadratic age effects)

- Chan et al. (2014) found that M5 is the most suitable model
Model-based Mortality Indexes

- 3 primary criteria by Chan et al. (2014)
 - the new-data-invariant property: to ensure tractability
 - highly interpretable
 - varying age-pattern of mortality improvement

- six stochastic models in Dowd et al. (2010)
 - M1 (Lee-Carter model)
 - M2 (Renshaw-Haberman model)
 - M3 (Age-Period-Cohort model)
 - M5 (Cairns-Blake-Dowd model)
 - M6 (Cairns-Blake-Dowd model with cohort effects)
 - M7 (Cairns-Blake-Dowd model with cohort and quadratic age effects)

- Chan et al. (2014) found that M5 is the most suitable model
Model-based Mortality Indexes

- 3 primary criteria by Chan et al. (2014)
 - the new-data-invariant property: to ensure tractability
 - highly interpretable
 - varying age-pattern of mortality improvement
- six stochastic models in Dowd et al. (2010)
 - M1 (Lee-Carter model)
 - M2 (Renshaw-Haberman model)
 - M3 (Age-Period-Cohort model)
 - M5 (Cairns-Blake-Dowd model)
 - M6 (Cairns-Blake-Dowd model with cohort effects)
 - M7 (Cairns-Blake-Dowd model with cohort and quadratic age effects)
- Chan et al. (2014) found that M5 is the most suitable model
Adapting Mortality Models

- model with age-specific parameters (M1)
 - estimate the model parameters using a restricted sample period \([t_{\text{start}}, t_{\text{mid}}]\)
 - keep the age-specific parameters fixed when we update the model for sample period \([t_{\text{mid}}, t_{\text{end}}]\)
- model with cohort effect parameters (M6 and M7)
 - estimate the time-varying parameters first
 - estimate the cohort effect parameters from the residuals
Adapting Mortality Models

- model with age-specific parameters (M1)
 - estimate the model parameters using a restricted sample period \([t_{start}, t_{mid}]\)
 - keep the age-specific parameters fixed when we update the model for sample period \([t_{mid}, t_{end}]\)

- model with cohort effect parameters (M6 and M7)
 - estimate the time-varying parameters first
 - estimate the cohort effect parameters from the residuals
Adapting Mortality Models

- model with age-specific parameters (M1)
 - estimate the model parameters using a restricted sample period \([t_{start}, t_{mid}]\)
 - keep the age-specific parameters fixed when we update the model for sample period \([t_{mid}, t_{end}]\)
- model with cohort effect parameters (M6 and M7)
 - estimate the time-varying parameters first
 - estimate the cohort effect parameters from the residuals
Adapting Mortality Models

- model with both age-specific and cohort effect parameters (M2 and M3)
 - keep the age-specific parameters fixed
 - estimate the time-varying parameters first
 - estimate the cohort effect parameters from the residuals
Adapting Mortality Models

- **M1**: adapted M1
 \[
 \ln (m_{x,t}) = \beta_x^{(1)} + \beta_x^{(2)} \kappa_t^{(2)}
 \]

- **M2**: adapted M2
 \[
 \ln (m_{x,t}) = \beta_x^{(1)} + \beta_x^{(2)} \kappa_t^{(2)} + \beta_x^{(3)} \gamma_t^{(3)}
 \]

- **M3**: adapted M3
 \[
 \ln (m_{x,t}) = \beta_x^{(1)} + n_a^{-1} \kappa_t^{(2)} + n_a^{-1} \gamma_t^{(3)}
 \]

- **M6**: adapted M6
 \[
 \ln \left(\frac{q_{x,t}}{1-q_{x,t}} \right) = \kappa_t^{(1)} + \kappa_t^{(2)} (x - \bar{x}) + \gamma_t^{(3)}
 \]

- **M7**: adapted M7
 \[
 \ln \left(\frac{q_{x,t}}{1-q_{x,t}} \right) = \kappa_t^{(1)} + \kappa_t^{(2)} (x - \bar{x}) + \kappa_t^{(3)} ((x - \bar{x})^2 - \hat{\sigma}_x^2) + \gamma_t^{(4)}
 \]
Adapting Mortality Models

- **M1**: adapted M1
 \[\ln(m_{x,t}) = \beta_x^{(1)*} + \beta_x^{(2)*} \kappa_t^{(2)} \]

- **M2**: adapted M2
 \[\ln(m_{x,t}) = \beta_x^{(1)*} + \beta_x^{(2)*} \kappa_t^{(2)} + \beta_x^{(3)*} \gamma_{t-x}^{(3)*} \]

- **M3**: adapted M3
 \[\ln(m_{x,t}) = \beta_x^{(1)*} + n_{a}^{-1} \kappa_t^{(2)} + n_{a}^{-1} \gamma_{t-x}^{(3)*} \]

- **M6**: adapted M6
 \[\ln\left(\frac{q_{x,t}}{1-q_{x,t}}\right) = \kappa_t^{(1)} + \kappa_t^{(2)} (x - \bar{x}) + \gamma_{t-x}^{(3)*} \]

- **M7**: adapted M7
 \[\ln\left(\frac{q_{x,t}}{1-q_{x,t}}\right) = \kappa_t^{(1)} + \kappa_t^{(2)} (x - \bar{x}) + \kappa_t^{(3)} ((x - \bar{x})^2 - \hat{\sigma}^2_{x}) + \gamma_{t-x}^{(4)*} \]
Adapting Mortality Models

- **M1**: adapted M1
 \[\ln (m_{x,t}) = \beta^{(1)*}_x + \beta^{(2)*}_x \kappa^{(2)}_t \]

- **M2**: adapted M2
 \[\ln (m_{x,t}) = \beta^{(1)*}_x + \beta^{(2)*}_x \kappa^{(2)}_t + \beta^{(3)*}_x \gamma^{(3)*}_{t-x} \]

- **M3**: adapted M3
 \[\ln (m_{x,t}) = \beta^{(1)*}_x + n^{-1}_a \kappa^{(2)}_t + n^{-1}_a \gamma^{(3)*}_{t-x} \]

- **M6**: adapted M6
 \[\ln \left(\frac{q_{x,t}}{1-q_{x,t}} \right) = \kappa^{(1)}_t + \kappa^{(2)}_t (x - \bar{x}) + \gamma^{(3)*}_{t-x} \]

- **M7**: adapted M7
 \[\ln \left(\frac{q_{x,t}}{1-q_{x,t}} \right) = \kappa^{(1)}_t + \kappa^{(2)}_t (x - \bar{x}) + \kappa^{(3)}_t \left((x - \bar{x})^2 - \hat{\sigma}^2_x \right) + \gamma^{(4)*}_{t-x} \]
Adapting Mortality Models

- **M1**: adapted M1
 \[\ln (m_{x,t}) = \beta_x^{(1)*} + \beta_x^{(2)*} \kappa_t^{(2)} \]

- **M2**: adapted M2
 \[\ln (m_{x,t}) = \beta_x^{(1)*} + \beta_x^{(2)*} \kappa_t^{(2)} + \beta_x^{(3)*} \gamma_{t-x}^{(3)*} \]

- **M3**: adapted M3
 \[\ln (m_{x,t}) = \beta_x^{(1)*} + n^{-1} \kappa_t^{(2)} + n^{-1} \gamma_{t-x}^{(3)*} \]

- **M6**: adapted M6
 \[\ln \left(\frac{q_{x,t}}{1-q_{x,t}} \right) = \kappa_t^{(1)} + \kappa_t^{(2)} (x - \bar{x}) + \gamma_{t-x}^{(3)*} \]

- **M7**: adapted M7
 \[\ln \left(\frac{q_{x,t}}{1-q_{x,t}} \right) = \kappa_t^{(1)} + \kappa_t^{(2)} (x - \bar{x}) + \kappa_t^{(3)} ((x - \bar{x})^2 - \hat{\sigma}_x^2) + \gamma_{t-x}^{(4)*} \]
Constructing Mortality Indexes

- gender-specific mortality data from 10 populations
 - Australasia: Australia (AUS), New Zealand (NZL)
 - East Asia: Taiwan (TWN), Japan (JPN)
 - Nordic region: Norway (NOR), Sweden (SWE)
 - Western Europe: England and Wales (EW), France (FRA)
 - North America: Canada (CAN), United States (USA)
- data source: Human Mortality Database
- age range: 40-90
- data sample period for NZL: [1950,1993], [1994,2008]
- data sample period for others: [1950,1994], [1995,2009]
Constructing Mortality Indexes

- gender-specific mortality data from 10 populations
 - Australasia: Australia (AUS), New Zealand (NZL)
 - East Asia: Taiwan (TWN), Japan (JPN)
 - Nordic region: Norway (NOR), Sweden (SWE)
 - Western Europe: England and Wales (EW), France (FRA)
 - North America: Canada (CAN), United States (USA)

- data source: Human Mortality Database
- age range: 40-90
- data sample period for NZL: [1950,1993], [1994,2008]
- data sample period for others: [1950,1994], [1995,2009]
Constructing Mortality Indexes

- gender-specific mortality data from 10 populations
 - Australasia: Australia (AUS), New Zealand (NZL)
 - East Asia: Taiwan (TWN), Japan (JPN)
 - Nordic region: Norway (NOR), Sweden (SWE)
 - Western Europe: England and Wales (EW), France (FRA)
 - North America: Canada (CAN), United States (USA)
- data source: Human Mortality Database
- age range: 40-90
- data sample period for NZL: [1950,1993], [1994,2008]
- data sample period for others: [1950,1994], [1995,2009]
Constructing Mortality Indexes

- maximum likelihood estimation (MLE)
- model selection criterion
 - reduction in log-likelihoods between original model and adapted model
 - Bayesian Information Criterion (BIC)
- M7* gives the best BIC values and the smallest reductions in log-likelihood values
- construct mortality indexes using $\kappa_t^{(1)}, \kappa_t^{(2)}, \kappa_t^{(3)}$ in M7*
Constructing Mortality Indexes

- maximum likelihood estimation (MLE)
- model selection criterion
 - reduction in log-likelihoods between original model and adapted model
 - Bayesian Information Criterion (BIC)
- M7* gives the best BIC values and the smallest reductions in log-likelihood values
- construct mortality indexes using \(\kappa_t^{(1)}, \kappa_t^{(2)}, \kappa_t^{(3)} \) in M7*
Constructing Mortality Indexes

Pop	Males					Females				
AUS	3734	3125	1624	335	19	1045	6249	1431	1150	24
CAN	6948	24836	1404	203	15	1060	6809	805	1313	194
EW	13886	2362	2600	90	83	9566	1633	2353	1252	27
FRA	2051	2282	3466	4539	1820	7847	10668	4107	14868	545
JPN	24212	1805	4118	2655	537	88416	2707	3853	13185	261
NZL	972	830	399	32	1	555	538	389	191	38
NOR	359	2351	437	54	4	94	267	377	480	27
SWE	979	364	902	190	12	361	206	892	943	76
TWN	8033	6151	951	910	5	3415	1886	718	505	15
USA	53358	14229	10554	8860	1766	20218	11028	7202	14371	2224
Constructing Mortality Indexes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUS</td>
<td>15766</td>
<td>14937</td>
<td>11419</td>
<td>11942</td>
<td>8894</td>
<td>8199</td>
<td>10051</td>
<td>20938</td>
<td>10810</td>
<td>17545</td>
<td>10452</td>
<td>7965</td>
</tr>
<tr>
<td>CAN</td>
<td>22776</td>
<td>58868</td>
<td>11543</td>
<td>10697</td>
<td>9298</td>
<td>8781</td>
<td>10677</td>
<td>22564</td>
<td>10066</td>
<td>17673</td>
<td>11453</td>
<td>8752</td>
</tr>
<tr>
<td>EW</td>
<td>39538</td>
<td>14465</td>
<td>14497</td>
<td>16137</td>
<td>9887</td>
<td>9454</td>
<td>30549</td>
<td>12765</td>
<td>13763</td>
<td>24662</td>
<td>12298</td>
<td>9097</td>
</tr>
<tr>
<td>FRA</td>
<td>15899</td>
<td>14421</td>
<td>16359</td>
<td>56935</td>
<td>23612</td>
<td>13372</td>
<td>26739</td>
<td>30858</td>
<td>17351</td>
<td>121168</td>
<td>41037</td>
<td>11041</td>
</tr>
<tr>
<td>JPN</td>
<td>62618</td>
<td>14144</td>
<td>19169</td>
<td>40456</td>
<td>19438</td>
<td>12627</td>
<td>187997</td>
<td>15358</td>
<td>17880</td>
<td>132618</td>
<td>38947</td>
<td>12164</td>
</tr>
<tr>
<td>NZL</td>
<td>8852</td>
<td>9100</td>
<td>7752</td>
<td>6833</td>
<td>6902</td>
<td>6848</td>
<td>7880</td>
<td>8375</td>
<td>7605</td>
<td>7869</td>
<td>7213</td>
<td>6801</td>
</tr>
<tr>
<td>NOR</td>
<td>7801</td>
<td>12354</td>
<td>7989</td>
<td>7338</td>
<td>7057</td>
<td>7021</td>
<td>7061</td>
<td>7922</td>
<td>7621</td>
<td>9977</td>
<td>7716</td>
<td>6849</td>
</tr>
<tr>
<td>SWE</td>
<td>9668</td>
<td>8935</td>
<td>9499</td>
<td>9175</td>
<td>8035</td>
<td>7652</td>
<td>8269</td>
<td>8460</td>
<td>9273</td>
<td>14262</td>
<td>9405</td>
<td>7589</td>
</tr>
<tr>
<td>TWN</td>
<td>24720</td>
<td>21321</td>
<td>10446</td>
<td>15448</td>
<td>10333</td>
<td>8580</td>
<td>14829</td>
<td>12271</td>
<td>9449</td>
<td>12044</td>
<td>8820</td>
<td>7888</td>
</tr>
<tr>
<td>USA</td>
<td>123233</td>
<td>40388</td>
<td>34770</td>
<td>102543</td>
<td>40562</td>
<td>17818</td>
<td>54680</td>
<td>33198</td>
<td>25935</td>
<td>122063</td>
<td>52332</td>
<td>16553</td>
</tr>
</tbody>
</table>
K-forward

- standardized mortality-linked security
- a swap between a fixed amount (pre-determined forward value) and a random amount (realized index value) related to one of the three indexes in a reference year
- K1-forward, K2-forward, K3-forward

\[
Y \times (\tilde{\kappa}^{(i)}_t - \kappa^{(i)}_t), \quad i = 1, 2, 3.
\]
K-forward

- standardized mortality-linked security
- a swap between a fixed amount (pre-determined forward value) and a random amount (realized index value) related to one of the three indexes in a reference year
- K1-forward, K2-forward, K3-forward

\[Y \times (\tilde{\kappa}_t^{(i)} - \kappa_t^{(i)}), \quad i = 1, 2, 3. \]
K-forward

- standardized mortality-linked security
- a swap between a fixed amount (pre-determined forward value) and a random amount (realized index value) related to one of the three indexes in a reference year
- K1-forward, K2-forward, K3-forward

\[Y \times (\tilde{\kappa}_{t*}^{(i)} - \kappa_{t*}^{(i)}), \quad i = 1, 2, 3. \]
Key K-duration (KKD)

- similar to key q-duration (Li and Luo, 2012) for q-forwards
- ‘key’: K-forwards are only available in certain key years t_1, t_2, \ldots, t_n
- measures the change in the value of a liability with respect to a small change in a key K-index
- two assumptions
 - a shock in $\kappa_{t,j}^{(i)}$ is accompanied by a level shift in $\kappa_t^{(i)}$ over the period of $t_j \leq t < t_{j+1}$
 - the shock on $\kappa_t^{(i)}$ has no impact on $\kappa_t^{(h)}$ for all $i \neq h$ and t
- $KKD_i(P(\kappa), j) = \frac{\partial P(\kappa)}{\partial \kappa_{t,j}^{(i)}}$
Key K-duration (KKD)

- similar to key q-duration (Li and Luo, 2012) for q-forwards
- ‘key’: K-forwards are only available in certain key years t_1, t_2, \ldots, t_n
- measures the change in the value of a liability with respect to a small change in a key K-index
- two assumptions
 - a shock in $\kappa_{t,j}^{(i)}$ is accompanied by a level shift in $\kappa_{t}^{(i)}$ over the period of $t_j \leq t < t_{j+1}$
 - the shock on $\kappa_{t}^{(i)}$ has no impact on $\kappa_{t}^{(h)}$ for all $i \neq h$ and t
- $KKD_i(P(\kappa), j) = \frac{\partial P(\kappa)}{\partial \kappa_{t,j}^{(i)}}$
Key K-duration (KKD)

- similar to key q-duration (Li and Luo, 2012) for q-forwards
- ‘key’: K-forwards are only available in certain key years t_1, t_2, \ldots, t_n
- measures the change in the value of a liability with respect to a small change in a key K-index
- two assumptions
 - a shock in $\kappa_{t,j}^{(i)}$ is accompanied by a level shift in $\kappa_t^{(i)}$ over the period of $t_j \leq t < t_{j+1}$
 - the shock on $\kappa_t^{(i)}$ has no impact on $\kappa_t^{(h)}$ for all $i \neq h$ and t
- $KKD_i(P(\kappa), j) = \frac{\partial P(\kappa)}{\partial \kappa_{t,j}^{(i)}}$
Building Longevity Hedge

- KKD strategy
- KKD of liability portfolio is estimated numerically
- KKD of K-forward can be derived analytically
 - KKD of liability portfolio = KKD of hedge portfolio consisting of K-forwards, for each key K-index in each key year
 - determine the required notional amounts of K1-forward, K2-forward and K3-forward separately in respective key years
Building Longevity Hedge

- KKD strategy
- KKD of liability portfolio is estimated numerically
- KKD of K-forward can be derived analytically
- KKD of liability portfolio = KKD of hedge portfolio consisting of K-forwards, for each key K-index in each key year
- determine the required notional amounts of K1-forward, K2-forward and K3-forward separately in respective key years
Hedging Illustrations: Single Cohort

- pension plan coverage: $1 at the beginning of each year from age 65 until the pensioner dies or attains age 91
- mortality data: English and Welsh males, ages 40-90, [1950,2009]
- reference years: 2015, 2020, 2025, 2030
- interest rate: 3% flat
- parametric bootstrap (see Brouhns et al., 2005) simulation: 5000 scenarios
- amount of longevity risk reduction:
 \[R = 1 - \frac{\text{variance of PV of unexpected cash flows after hedging}}{\text{variance of PV of unexpected cash flows without hedging}} \]
- simulation models: M7*, M5, M3, M2, MRW (Bell, 1997)
Hedging Illustrations: Single Cohort

- pension plan coverage: $1 at the beginning of each year from age 65 until the pensioner dies or attains age 91
- mortality data: English and Welsh males, ages 40-90, [1950,2009]
- reference years: 2015, 2020, 2025, 2030
- interest rate: 3% flat
- parametric bootstrap (see Brouhns et al., 2005) simulation: 5000 scenarios
- amount of longevity risk reduction:
 \[R = 1 - \frac{\text{variance of PV of unexpected cash flows after hedging}}{\text{variance of PV of unexpected cash flows without hedging}} \]
- simulation models: M7*, M5, M3, M2, MRW (Bell, 1997)
Hedging Illustrations: Single Cohort

- pension plan coverage: $1 at the beginning of each year from age 65 until the pensioner dies or attains age 91
- mortality data: English and Welsh males, ages 40-90, [1950,2009]
- reference years: 2015, 2020, 2025, 2030
- interest rate: 3% flat
- parametric bootstrap (see Brouhns et al., 2005) simulation: 5000 scenarios
- amount of longevity risk reduction:
 \[R = 1 - \frac{\text{variance of PV of unexpected cash flows after hedging}}{\text{variance of PV of unexpected cash flows without hedging}} \]
- simulation models: M7*, M5, M3, M2, MRW (Bell, 1997)
Hedging Illustrations: Single Cohort

- Pension plan coverage: $1 at the beginning of each year from age 65 until the pensioner dies or attains age 91
- Mortality data: English and Welsh males, ages 40-90, [1950,2009]
- Reference years: 2015, 2020, 2025, 2030
- Interest rate: 3% flat
- Parametric bootstrap (see Brouhns et al., 2005) simulation: 5000 scenarios
- Amount of longevity risk reduction:
 \[R = 1 - \frac{\text{variance of PV of unexpected cash flows after hedging}}{\text{variance of PV of unexpected cash flows without hedging}} \]
- Simulation models: M7*, M5, M3, M2, MRW (Bell, 1997)
Hedging Illustrations: Single Cohort

- KKD strategy: simple calibration
- Optimal hedge: simulations + numerical optimization

<table>
<thead>
<tr>
<th>Simulation model</th>
<th>KKD strategy</th>
<th>Optimal hedge</th>
</tr>
</thead>
<tbody>
<tr>
<td>M7*</td>
<td>94.7%</td>
<td>97.3%</td>
</tr>
<tr>
<td>M5</td>
<td>96.0%</td>
<td>99.1%</td>
</tr>
<tr>
<td>M3</td>
<td>95.6%</td>
<td>96.6%</td>
</tr>
<tr>
<td>M2</td>
<td>95.2%</td>
<td>95.8%</td>
</tr>
<tr>
<td>MRW</td>
<td>93.5%</td>
<td>94.0%</td>
</tr>
</tbody>
</table>
Hedging Illustrations: Single Cohort

Model M7*

- Unhedged
- K1 only
- K2 only
- K3 only
- K1 & K2 & K3

Present value of unexpected cash flow density
Hedging Illustrations: Single Cohort

- Sampling risk (small-sample risk): smaller R for smaller number of pensioners
- Sensitivity tests
 - interest rate: R is not sensitive to the interest rate assumption
 - availability of K-forwards: more key years and/or smaller separation between two adjacent key years produce more effective hedge
 - age range: R of K1- and K3-forward increase for an older age range, but R of K2-forward drops
- advanced ages: satisfactory R for pension coverage until age 101
Hedging Illustrations: Single Cohort

- Sampling risk (small-sample risk): smaller R for smaller number of pensioners
- Sensitivity tests
 - interest rate: R is not sensitive to the interest rate assumption
 - availability of K-forwards: more key years and/or smaller separation between two adjacent key years produce more effective hedge
 - age range: R of K1- and K3-forward increase for an older age range, but R of K2-forward drops
- advanced ages: satisfactory R for pension coverage until age 101
Hedging Illustrations: Single Cohort

- Sampling risk (small-sample risk): smaller R for smaller number of pensioners
- Sensitivity tests
 - interest rate: R is not sensitive to the interest rate assumption
 - availability of K-forwards: more key years and/or smaller separation between two adjacent key years produce more effective hedge
 - age range: R of K1- and K3-forward increase for an older age range, but R of K2-forward drops
- advanced ages: satisfactory R for pension coverage until age 101
Hedging Illustrations: Single Cohort

- Sampling risk (small-sample risk): smaller R for smaller number of pensioners
- Sensitivity tests
 - interest rate: R is not sensitive to the interest rate assumption
 - availability of K-forwards: more key years and/or smaller separation between two adjacent key years produce more effective hedge
 - age range: R of K1- and K3-forward increase for an older age range, but R of K2-forward drops
- advanced ages: satisfactory R for pension coverage until age 101
Hedging Illustrations: Single Cohort

- Sampling risk (small-sample risk): smaller R for smaller number of pensioners
- Sensitivity tests
 - interest rate: R is not sensitive to the interest rate assumption
 - availability of K-forwards: more key years and/or smaller separation between two adjacent key years produce more effective hedge
 - age range: R of K1- and K3-forward increase for an older age range, but R of K2-forward drops
- advanced ages: satisfactory R for pension coverage until age 101
Hedging Illustrations: Multiple Cohorts

- consider a multi-cohort pension plan with a coverage from age 60 to 91
- with both active members (ages 50-59) and retirement pensioners (ages 60-90)
- compare K-forward hedge with q-forward hedge
- K-forward: reference year
- q-forward: reference age and reference year
- K-forward hedge is easier to calibrate using key K-index
- q-forward hedge requires key cohorts and key q-rates
Hedging Illustrations: Multiple Cohorts

- consider a multi-cohort pension plan with a coverage from age 60 to 91
- with both active members (ages 50-59) and retirement pensioners (ages 60-90)
- compare K-forward hedge with q-forward hedge
- K-forward: reference year
- q-forward: reference age and reference year
- K-forward hedge is easier to calibrate using key K-index
- q-forward hedge requires key cohorts and key q-rates
Hedging Illustrations: Multiple Cohorts

- consider a multi-cohort pension plan with a coverage from age 60 to 91
- with both active members (ages 50-59) and retirement pensioners (ages 60-90)
- compare K-forward hedge with q-forward hedge
- K-forward: reference year
- q-forward: reference age and reference year
- K-forward hedge is easier to calibrate using key K-index
- q-forward hedge requires key cohorts and key q-rates
Hedging Illustrations: Multiple Cohort

Pensioners

- **Unhedged**
- **15 K–forwards**
- **15 q–forwards**

Plan members

- **Unhedged**
- **15 K–forwards**
- **24 q–forwards**

Present value of unexpected cash flow density
Hedging Illustrations: Multiple Cohorts

- the number of instruments required to produce a satisfactory hedge using K-forward remains the same, but that of q-forward rises with a larger number of cohorts
- due to the reference rates of K-forward and q-forward contracts
- K-forwards are potentially more liquid
Hedging Illustrations: Multiple Cohorts

- the number of instruments required to produce a satisfactory hedge using K-forward remains the same, but that of q-forward rises with a larger number of cohorts
- due to the reference rates of K-forward and q-forward contracts
- K-forwards are potentially more liquid
Concluding Remarks

- adapting mortality models to achieve the new-data-invariant property
- constructing mortality indexes using model M7*
- securitization of K-forward
- KKD hedging strategy yields excellent longevity risk reduction
- K-forwards are potentially more liquid for hedging purpose
Concluding Remarks

- adapting mortality models to achieve the new-data-invariant property
- constructing mortality indexes using model M7*
- securitization of K-forward
- KKD hedging strategy yields excellent longevity risk reduction
- K-forwards are potentially more liquid for hedging purpose
Concluding Remarks

- adapting mortality models to achieve the new-data-invariant property
- constructing mortality indexes using model M7*
- securitization of K-forward
- KKD hedging strategy yields excellent longevity risk reduction
- K-forwards are potentially more liquid for hedging purpose
Future Research

- convexity measure in calibrating the hedge
- dynamic hedging
- population basis risk
Thank you!