

18TH EAST ASIAN ACTUARIAL CONFERENCE

12-15 October 2014 Taipei International Convention Center in Taipei Taiwan

Predictive Modelling: GLM vs Machine-Learning

Guanjun Jiang Principal & Consulting Actuary Milliman Limited

Agenda

- Introduction of Predictive Modelling
- Generalised Linear Model (GLM)
- Machine Learning (Eagle Eye Analytic)
- Case Study
- Summary

18TH EAST ASIAN ACTUARIAL CONFERENCE

12-15 October 2014 Taipei International Convention Center, Taipei Taiwan

PREDICTIVE MODELLING

Some Insurers.....

Are happy doing what they have always done.....

Others are happy being better and bigger than some.....

But Today Predictive Analytics Can Give You A Clear Vision of Where You Are and Light The Path Ahead.

Key Areas of Business Interaction

Knowledge gained results In competitive advantage through:

- Greater client satisfaction and retention
- Better risk selection
- Granular, targeted pricing
- More effective marketing

Usages of Predictive Modelling in Insurance

18TH EAST ASIAN ACTUARIAL CONFERENCE

12-15 October 2014 Taipei International Convention Center, Taipei Taiwan

GENERALISED LINEAR MODEL

Brief Introduction of GLM

Basic Structure:

$$g(\mu) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p + e_i$$

- Y --- n x 1 Vector (measured), belonging to Exponential Family (Poisson, Gamma, Normal, Binomial, Inverse Gaussian, Negative Binomial, Tweedie)
- Var(Yi) = f(E[Yi])
- $-\eta \eta = X\beta$
- $-\beta p x 1$ Vector (to be estimated)
- X ---- n x p (Design Matrix)
- g --- Link Function

GLM: What is a Good Model?

- Consistent over time and withstand random sampling tests
- Strikes a balance between fitting well and over-fitting the data
- Various measures and tests can be done using a combination of :
 - AIC/BIC
 - Residual plots
 - Cramer's V test the correlation of two categorical factors
 - Deviance
 - Chi-square
 - Confidence interval of fitted values for each factor
 - Gini

GLM: Revealing the Risk Shape

14

TAIPEI TAI

11

2014 **GLM Results: Does the Curve Fit?** TAIPEI TAI **GLM** Output 1.4 1.3 1.2 Relativities ←6+ Years 1.1 Less than 6 1.0 0.9 8.0 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 Less 65+ than 24 Driver's Age

GLM Results: Does the Curve Fit?

Empirical Experience

18TH EAST ASIAN ACTUARIAL CONFERENCE

12-15 October 2014 Taipei International Convention Center, Taipei Taiwan

MACHINE LEARNING

Machine Learning

What is Machine Learning

 "a branch of artificial intelligence, is a scientific discipline concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data, such as from sensor data or databases." Wikipedia

Addresses the fundamental questions directly

- Where are we making money?
- Where are we losing money?
- Can we be confident?

Identifies risk segments that are credible and produce consistent results from year to year

- Iterative, artificial intelligence process
- User defines the degree of credibility within segments

Results are only as good as the algorithm

A good algorithm will maximise the number of segments identified

Technology/Modern Statistical Techniques is the Differentiator...

Current Methods (like GLM/GAM)

- Assumes that variables are independent <u>unless specifically</u> <u>defined otherwise</u>
 - "Optimal" predictors are based on assumptions
 - Can't solve what you don't know
- The number of risk attribute/value interactions is too large for a human to investigate given real-world resource and time constraints, therefore only a very small subset is investigated
- Pricing models are done at a coverage level versus a <u>customer</u> level

Machine Learning (like Ensembles)

- Allows data to interact naturally to find the patterns between characteristics within the data
- ✓ Finds the trade-off between overand under-fitting automatically
- Does not require the user to specify the predictors and interactions to be included in the model - it discovers them!
- Extremely Fast and Efficient
- Performed at coverage, unit, or policy level

EEA Segmentation Analysis Types

<u>Typical Uses</u>:

- Rate plan improvement
- Underwriting rules
- Target marketing

- Partitions the whole "universe" into exhaustive and mutually exclusive segments
- Available model responses: loss ratio, pure premium, frequency, severity, profit, retention
- ✓ Segments:
 - Described by significant attributes
 - Plain English description, easy to understand and actionable
 - "Complex" compound variables

Pricing & UW: Find Errors

Talon vs. the perceived state-of-the-art solution:

We found 60% of the exposures in their technical premiums had pricing errors greater than 10%.

- Underpricing errors of up to 54%
- Overpricing errors of up to 34%

The difference: Talon's learning algorithms are designed specifically for insurance data.

Price & UW – How Talon finds the Errors

Private Passenger Auto (Total Portfolio Loss Ratio = 71%) Worst Customers Best Customers Loss Loss Ratio =Ratio = 150% 35% < 2 yrs2+ yrs No Yes 90% Tenure 63% 59% 87% Safe Driver Discount None 1+ Unmarried 62% 83% Drivers < 10 10 +None 1+ 76% 51% Tenure 75% 66% Females < 50 50 +78% Min Driver Age 60% Yes No 74% 58% Passive Restraint < 6 yrs6+ yrs 75% 69% Vehicle Age

Identify New Patterns in the Data

Some of the best customers are overpriced *Unique Pattern*: Combining

- Safe Driver Discount
- 10 year old policy, or older
- No Passive Restraints produces lowest loss ratio of 35%, 36 points lower than carrier average.

Some of the worst customers are Underpriced *Unique Pattern*: Combining 5 unique variables, including customer tenure, marital status and vehicle age, identifies unprofitable business with loss ratios at 2x carrier average.

Pricing - Main Concept for Telematics

Rapid Pricing Diagnostics using Machine Learning:

*Such analysis cannot be done with classical methods like GLMs because a) Cost effecting, complex interactions within the Telematics data can only be detected automatically (through Machine Learning) b) The price difference cannot be fitted by a GLM-Distribution

Pricing – Machine Learning for Telematics EAAC

Auto Telematics Product (Total Portfolio Loss Ratio = 106%)

Identify very profitable and unprofitable segments

Some of the best customers might be overpriced *Unique Pattern*: Combining

- High Mileage
- Mostly Day light
- Many trips

produces lowest loss ratio of 38%,

Some of the worst customers are underpriced and might be unexpected from their univariate patterns and can lie close to their good counterparts!

18TH EAST ASIAN ACTUARIAL CONFERENCE

12-15 October 2014 Taipei International Convention Center, Taipei Taiwan

CASE STUDY

FROM MODELS TO RESULTS

China Motor Tariff

		vate hicle			Ratir								
					Design								
	Pri [.] Veł		Less than 1 year		1-2 years		2-6 years		6+ years			Driver	
			Fixed premi um	Rate (%)	Fixed premi um	Rate (%)	Fixed premi um	Rate (%)	Fixed premi um	Rate (%)	l	Driver's A	
	Se	<6 eats	539	1.28	513	1.22	508	1.21	523	1.24		Gend C3 Drivina	
	6 [.] Se	-10 eats	646	1.28	616	1.22	609	1.21	628	1.24		C4 Pre-de	
	1 Se	0+ eats	646	1.28	616	1.22	609	1.21	628	1.24		Driving C5	

Rating Fac	tor	Factor	Description					
Designated	C1a	0.9	With designated driver					
Driver C1	C1b	1	Undesignated driver					
731 Pr.	C2a	1.05	Younger than 25 years old					
-13-1-1	C2b	1	[25,30)					
Driver's Age C2	C2c	0.95	[30,40)					
and the second second	C2d	1	[40,60)					
	C2e	1.05	At least 60 years old					
Gender	C3a	1	Male					
C3	C3b	0.95	Female					
Driving Vooro	C4a	1.05	Less than 1 year					
	C4b	1.02	[1,3)					
64	C4c	1	At least 3 years					
Pre-defined	C5a	1	Domestic					
Driving Area	C5b	0.95	Within province					
C5	C5c	0.92	Routine					
	C6a	0.9	ILess than 30,000 km/p.a.					
Average Annual	C6b	1	[30000,50000) km/p.a.					
Mileage C6	C6c	1.1-1.3	At least 50,000 km/p.a.					
Traffic Violation	C8a	0.9	No liable traffic ticket record in previous year					
Record C8	C8b	Liable traffic ticket record (s) previous year						

Significant Improvement on the Tariff A Southern China Branch

Significant Improvement on GLM A Southern China Branch

- High loss ratio means GLM underpriced and vice-versa
- Low loss ratio means GLM over-priced

Segmentation Result Drill Down Worse Segment

- NK		_	- 1
1 E	xport	t To	Excel

Segment	Earned Exposures (Car Years)	% Exp	Earned Premium	% EP	Incurred Losses	% IL	Loss Ratio Percent	Policy Count	% Pols	Claim Count	% Clms
11	7,239	9.9	10,249,296	9.7	8,490,569	8.5	82.84	9,602	10.6	4,039	9.5
10	8,238	11.3	13,351,755	12.7	11,362,421	11.4	85.10	10,029	11.1	4,471	10.5
9	6,319	8.7	8,230,383	7.8	7,198,459	7.2	87.46	7,958	8.8	3,527	8.3

Segmentation Result Drill Down Worse Segment

Worse Segment here means GLM has Under Priced the risk

18TH EAST ASIAN ACTUARIAL CONFERENCE

12-15 October 2014 Taipei International Convention Center, Taipei Taiwan

SUMMARY

Improvement on GLM – Using ML Results EAAC

Introduced new interactions basedIntroduced new rating variable

Results

✓ AIC Improved

- ✓ BIC Improved
- ✓ Gini Improved
- ✓ Chi-square just as good
- ✓ Deviance Improved

Recap

- Need for Predictive Modelling is Today
- GLM is a robust pricing approach

BUT

- Machine Learning will
 - Tackles GLM's shortcomings
 - Identify critical hidden "gems" and "pitfalls"
 - Speed up the model build process systematically

The Value

2014 EAAC TAIPEI TAIWAN

Most Predictive Signal

- Lift curves of 2x-4x or more over other methods
- 4-6 way or more data interactions
- Non-linear interactions
- Local effects
- High correlations, over 90%

Fast

- Hundreds of iterations produced in a few hours
- Results in 60-90 days
- Real-Time Scoring Service supports real time decisionmaking

Actionable

- Understandable Segments & Scores
- Forward looking Management tools for Enterprise-wide application
- Approved rate filings in regulated markets

Why EagleEye Analytics? From the perspective of clients

Most powerful and actionable predictive signal

After a failed attempt at getting a different, larger multivariate software provider to produce results specific to our company, we abandoned them. With Talon we have already Implemented the model results and are seeing the changes come to fruition."

Speed to business impact allowing for real time excellence

Talon is extremely fast and efficient. It allows us to process analyses in a matter of minutes or hours. We now have the ability to quickly implement and maintain a sustainable competitive advantage."

Complete vision

"EagleEye Analytics" solution suite gives us a common platform from which to dialogue regarding analytics and business performance throughout the enterprise into such areas as pricing, underwriting, claims and marketing. We now have a common and robust analytical foundation being used across our entire portfolio by multiple constituencies.

Proven results

We correctly determined that the cost of not utilizing EagleEye's solution suite was too great to ignore. It is the most innovative, unique and powerful approach to driving profits, avoiding adverse selection, and improving our competitive advantage."

ACTUARIAL CONFERENCE

12-15 October 2014 Taipei International Convention Center in Taipei Taiwan

Questions?

